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Cloud-Native Data Pipelines
In the last decade, the adoption of cloud computing grew exponentially. The shift from mo-
nolithic applications to microservices to cloud-native software has changed the responsi-
bilities and capabilities in application development.

The development and the operation of software were treated as two different crafts. With 
the rise of cloud technologies, such as Kubernetes, the software industry merged these skill 
sets into one, allowing one role, “DevOps”, to take care of both tasks. DevOps tools were 
created to meet the new requirements of a “You built it, you run it” culture. Principles, which 
were at the heart of this successful shift, include containers as deployment units, declarati-
ve runtime descriptions, continuous integration and deployment, observability, and elastic 
scalability. 

Data workers were largely untouched by this shift, and 
we still see clear separation in development and the 
operation of data-driven applications.

In this whitepaper, we outline the advantages of adop-
ting cloud-native computing principles to the building 
of data pipelines and the workflow of data engineers, 
data scientists, and ML engineers. We aim to enable 
data pipeline developers to operate their data pipelines 
efficiently and effectively. For this, we outline how cloud-
native principles apply to data workflows and where we 
see shortcomings in the current landscape of tools.

We present the benefits of containers for running data 
pipelines, demonstrate the improved transparency that 
can be unlocked by the “Sidecar” pattern, and discuss 
means to unlock declarative descriptions of data pipe-
lines. The closing chapters on “DataOps” and “Scalabi-
lity” summarize the impact of cloud-native principles 
and tooling on data workflows and how data processing 
must adapt to these to leverage the full potential of the 
cloud-native movement.

Cloud-Native
https://www.cncf.io/about/
who-we-are/

“Cloud-native technologies 
empower organizations to 
build and run scalable ap-
plications in modern, dyna-
mic environments such as 
public, private, and hybrid 
clouds. Containers, service 
meshes, microservices, im-
mutable infrastructure, and 
declarative APIs exemplify 
this approach.”

https://www.cncf.io/about/who-we-are/ 
https://www.cncf.io/about/who-we-are/ 


Runtime Consistency with Containers
In cloud-native environments, applications are de-
ployed as containers. In "Principles of Container-
Based Application Design"1, RedHat defined a set of 
principles, which are nowadays industry standards 
for designing containerized applications. This sec-
tion carries the foundational work of RedHat over to 
building and deploying data pipelines in the cloud 
era:

Image Immutability Principle (IIP): “..., and once 
[Containers are] built are not expected to change 
between different environments”. For data pipelines, 
this should even be true for the same environment 
and different revisions of data pipelines. Data is at 
the heart of every organization, and the processing 
of data needs to be auditable in hindsight as well as 
runtime. IIP gives data teams and their organizati-
ons the ability to pinpoint the code that was used to 
transform and gain value from their data.

Self-containment Principle (S-CP): “This principle 
dictates that a container should contain everything 
it requires at build time.” Relying only on the avai-
lability of the Linux kernel effectively allows any lib-
rary or even language to be used at data pipeline 
definition/creation time. Today, the majority of data 
transformations and data science work is done in 
Python with an abundance of choice when it comes 
to feature engineering, data transformation, and ML/
statistical model training. S-CP allows data teams to 
use any of their favorite tools and libraries to effec-
tively build a runtime environment tailored to their 
needs.

Runtime Confinement Principle (RCP): “This RCP 
principle suggests that every container declares its 
resource requirements [CPU, Memory, Storage] and 
pass that information to the platform.” Data pipe-
lines can and should declare their resource requests. 
Having the ability to change these at runtime makes 
for great adaptability and leads to less downtime or 
crashes of data pipelines. This principle improves the 
transparency for analyzing resources used by diffe-
rent data teams across organizations. RCP allows 
for isolation of resource consumption and therefore 
failures, which are caused by “rogue” data pipelines 
consuming more resources than expected.

1 https://www.redhat.com/en/resources/cloud-native-container-design-whitepaper
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“Image Immutability”, “Self-containment”, and “Runtime Confinement” are three of RedHat’s 
seven principles. These three principles have a high impact on developing, deploying and 
operating data pipelines. Applying these to data pipeline runtimes will result in more con-
sistent testing, higher transparency of deployed code, and better over-all observability.

Figure 1: Container Based Data Pipelines



Sidecars: Non-intrusive Observability Pattern
Containers and Kubernetes unlock the potential for 
real-time and non-intrusive monitoring, logging, and 
debugging features. A common pattern for this is the 
use of sidecar containers. Sidecars are automatical-
ly injected into a Kubernetes Pod and resemble the 
standard practice to increase observability, control, 
and auditing potentials for cloud-native workloads.

Injecting sidecars to, for instance, forward network 
connection and application logs of data pipelines 
allows for centralized observation. Utilizing open-
source tools for service meshes (e.g., OSM, Istio, 
Linkerd, etc.) and alerting & monitoring (e.g., Pro-
metheus, Grafana, ELK, etc.) allows for maximum 
transparency and control integrated into establis-
hed technologies.

Cloud-native tools unlock these capabilities without 
putting a burden on the developer of data pipelines, 
since these benefits are automatically provided by 
the underlying platform at deployment time without 
the container being aware of them.

Cloud-native platforms for data pipelines might in-
ject sidecars into workloads, so that organizations 
can have full transparency on the “Who?”, “What?”, 
and “Why?”  for all data that is being processed, 
transformed, and loaded into analytics databases 
or ML models (referred to as “Data Sinks” below).

Sidecar containers allow for so-called circuit brea-
kers. Circuit breakers are processes, which isolate 
a given workflow from the rest of your applications 
and databases. Detecting malicious or unexpected 
behavior of a data pipeline is enabled by the collec-
ted data. Once, a data pipeline is classified as a thre-
at, circuit breakers can isolate the given process to 
reduce harm to the software system as a whole.
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Figure 2: Observability for Data Pipelines



Declarative Data Pipelines for Operations
As stated in CNCF’s definition of cloud-native tech-
nologies, declarative APIs are a cornerstone of 
cloud-native technology. Among APIs, we also have 
tools like Hashicorp Terraform, AWS CloudFormation, 
Kubernetes Manifests, and others that commoditize 
“Infrastructure as Code” and enable developers to 
manage their infrastructure in a declarative manner.

A declarative approach allows for more reliable, re-
silient, and reproducible deployments and faster 
iterations in development. To allow the declarative 
definition of data pipelines, the underlying platform 
needs to fulfill a couple of prerequisites.

A common pattern in cloud-native environments 
is the outsourcing of the application state, e.g. mo-
ving session affinity to load balancers, implemen-
ting cache management with key-value stores, etc. 
State-managing technologies are consumed as 
services, which are declared as dependencies and 
either configured during runtime or at deployment 
time.

To enable declarative descriptions of data pipelines, 
we require services to keep some state and connect 
individual data pipelines to these. Each data pipeline 
requires the ability to outsource:

1. Which data has already been processed?

2. How to connect to a given data source or 
sink?

3. How many resources can or shall be used?

Questions 2 and 3 are easily answered by an or-
chestration system like Kubernetes. Connections to 
data sources and sinks can be defined through a 
combination of ConfigMaps and Secrets, which can 
be referenced at container startup time. New data 
pipelines might be configured to use a certain Sec-
ret managed by the operator deploying the pipeline.

Container orchestration systems provide means to 
declare how many resources a given application re-
quires. Such ResourceRequests can be used to sche-
dule a data pipeline.
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Which data has already been processed? DataCater uses Apache Kafka to keep track of 
records processed by committing offsets. Event-sourcing systems source events from data 
stores and can retain the data for a requested period of time in their local storage. Sourced 
events can be emitted or polled by data pipelines to apply transformations and load the 
processed data into target data sinks.

Therefore, an event-sourcing system such as Apache Kafka Connect is crucial for modern 
cloud-native data pipelines. Having a service tracking what data has processed by which 
consumer unlocks the potential for having a declarative approach to data pipelines.

With state management provided by a platform with the above components, we can de-
fine Data Pipelines as a set of three components: data sources, filters and transformations, 
and data sinks. The following Figure 3: Data Pipelines as Code illustrates a cloud-native data 
pipeline.

Figure 3: Data Pipelines as Code



DevOps and DataOps
In the scope of this whitepaper, we define DevOps 
as “a set of practices intended to reduce the time 
between committing a change to a system and the 
change being placed into normal production, while 
ensuring high quality”.2

The ultimate goal of DataOps would be to reduce 
the time needed for developing and deploying data 
pipelines. Breaking down the parts of the above de-
finition, we can derive tools required to implement 
automated deployments to production upon code 
changes in data pipelines.

The status quo of developing and operating data 
pipelines unveils a couple of conceptual flaws when 
it comes to automated roll-outs of new pipeline re-
visions. We addressed two needs of data pipelines, 
runtime consistency and declarative definition, in 
former chapters. This chapter focuses on automati-
cally ensuring the quality of changes applied to data 
pipelines.

Application development in a DevOps fashion en-
sures high quality by having consistent builds and 
fully-automated unit, integration, and end-to-end 
testing of new revisions. Data pipeline developers do 
not have access to similar tooling and cannot effi-
ciently test changes before rolling them out to pro-
duction. Reasons for this include:

1. Runtimes are not isolated. Resource sharing 
makes it almost impossible to replicate be-
havior from testing environments to produc-
tion environments, and vice versa. Produc-
tion environments typically run much more 
workloads in parallel and are equipped diffe-
rently, making them behave differently.

2. Frameworks like Apache Spark, Apache Ha-
doop, etc. require a running (simulated) clus-
ter for their programmatic APIs to work. As a 
consequence, unit tests either become long-
running procedures or developers test their 
data transformations separately and “hope” 
that the corresponding frameworks APIs be-
have the same way.

2 Bass, Len; Weber, Ingo; Zhu, Liming (2015). DevOps: A Software Architect‘s Perspective.
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We propose a different approach to processing data. From our experience, most data sets 
are in motion and change over time. Instead of assuming that a data set can be processed 
in one go as a batch, we prefer considering data sets as continuous flows of information. As 
a consequence, we never assume that a data set is complete but always expect that - at a 
certain time - we can only see a window of an endless stream of data. In other, slightly more 
technical terms, we suggest perceiving batch jobs as a subset of event streaming where 
batches might resemble a window, defined by time range or amount of records, of data 
change event streams.

Moving from batch processing to streaming unlocks automated quality assurance for data 
pipelines. Container-based data pipelines are self-contained and define their needed re-
sources at deployment time. Self-containment isolates data pipelines from each other and 
allows an orchestrator, like Kubernetes, to ensure the availability of compute resources be-
fore starting the transformation of data.

Windowed streams can be emulated by the same principles as applied in continuous inte-
gration pipelines. For efficient testing, you might reduce the size of the window, if your data 
pipeline requires aggregates. However, there is no need to change the actual code to ad-
here to a certain specialized test runtime, as the code you test with is the exact same code 
you run in production.

Figure 4: Development Loop for Batch and Streaming



Scalability - changing data processing
Gartner defines scalability as follows:

“Scalability is the measure of a system’s ab-
ility to increase or decrease in performance 
and cost in response to changes in applica-
tion and system processing demands.”3 

One major reason why cloud providers are tremen-
dously successful is their “pay as you go model”, 
which requires scalability built into applications. To-
day's ETL, ELT, and data pipeline frameworks work by 
loading large batches of data. Hence, the amount 
of resources requested, especially CPU, disk storage, 
and memory, are calculated against the peak load. 
This in it itself is not a scalable approach, as we can-
not adapt over time.

Kubernetes and other cloud-native technologies 
give us the ability to elastically scale our resource 
needs at runtime: Requesting more or less resources 
is a common approach. With event streaming, we 
can make use of the scalability capabilities of mo-
dern cloud-native runtimes.

Once we make the shift to event streaming, the need 
to calculate peak loads becomes obsolete. Contai-
ner-based data pipelines can automatically cal-
culate their resource requirements as a function of 
window size. In its most basic version, the function 
would look like:

R(window_size) := window_size * record_size 
+ constant

With event streaming as the standard mechanism to 
extract, move, transform, and load data to databa-
ses. We can leverage scalability of underlying cloud 
native platform resource allocation to optimize our 
usage of resources. Kubernetes offers so-called Ho-
rizontal Pod Scalers (HPA). HPA’s are automatical-
ly managed by Kubernetes for certain application 
types like Deployments. As we outsourced tracking 
state, we can deploy streaming data pipelines as 
stateless applications and Kubernetes takes care of 
varying the resource usage. This is depicted in the 
following figure.

3 https://www.gartner.com/en/information-technology/glossary/scalability
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Figure 5: Scalability for Batch and Streaming



Conclusions
Cloud-native environments change the way we, as 
an industry, should work with data. This white paper 
walked through the advantages of applying cloud-
native best practices to data workflows like ETL, ELT, 
and data pipelines in general.

We discovered shortcomings in tooling and plat-
forms, which need to be addressed to effectively 
transfer learnings from DevOps to data workflows. 
DataOps can be achieved, if we advance the de-
velopment of data pipelines as follows:

• Reduce steps for continuous integration by 
using the same runtime for development, 
testing, and production is enabled by contai-
ner images as immutable contexts.

• Prefer (windowed) streams over batches 
for a higher elasticity instead of blocking re-
sources for peak loads.

• Use modern message brokers, such as Apa-
che Kafka, for managing the state of data 
pipelines.
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