
Accelerating data development by
adopting cloud-native principles.

White Paper
December, 2021

Author: Hakan Lofcali

Cloud-Native
Data Pipelines

Cloud-Native Data Pipelines
In the last decade, the adoption of cloud computing grew exponentially. The shift from mo-
nolithic applications to microservices to cloud-native software has changed the responsi-
bilities and capabilities in application development.

The development and the operation of software were treated as two different crafts. With
the rise of cloud technologies, such as Kubernetes, the software industry merged these skill
sets into one, allowing one role, “DevOps”, to take care of both tasks. DevOps tools were
created to meet the new requirements of a “You built it, you run it” culture. Principles, which
were at the heart of this successful shift, include containers as deployment units, declarati-
ve runtime descriptions, continuous integration and deployment, observability, and elastic
scalability.

Data workers were largely untouched by this shift, and
we still see clear separation in development and the
operation of data-driven applications.

In this whitepaper, we outline the advantages of adop-
ting cloud-native computing principles to the building
of data pipelines and the workflow of data engineers,
data scientists, and ML engineers. We aim to enable
data pipeline developers to operate their data pipelines
efficiently and effectively. For this, we outline how cloud-
native principles apply to data workflows and where we
see shortcomings in the current landscape of tools.

We present the benefits of containers for running data
pipelines, demonstrate the improved transparency that
can be unlocked by the “Sidecar” pattern, and discuss
means to unlock declarative descriptions of data pipe-
lines. The closing chapters on “DataOps” and “Scalabi-
lity” summarize the impact of cloud-native principles
and tooling on data workflows and how data processing
must adapt to these to leverage the full potential of the
cloud-native movement.

Cloud-Native
https://www.cncf.io/about/
who-we-are/

“Cloud-native technologies
empower organizations to
build and run scalable ap-
plications in modern, dyna-
mic environments such as
public, private, and hybrid
clouds. Containers, service
meshes, microservices, im-
mutable infrastructure, and
declarative APIs exemplify
this approach.”

https://www.cncf.io/about/who-we-are/
https://www.cncf.io/about/who-we-are/

Runtime Consistency with Containers
In cloud-native environments, applications are de-
ployed as containers. In "Principles of Container-
Based Application Design"1, RedHat defined a set of
principles, which are nowadays industry standards
for designing containerized applications. This sec-
tion carries the foundational work of RedHat over to
building and deploying data pipelines in the cloud
era:

Image Immutability Principle (IIP): “..., and once
[Containers are] built are not expected to change
between different environments”. For data pipelines,
this should even be true for the same environment
and different revisions of data pipelines. Data is at
the heart of every organization, and the processing
of data needs to be auditable in hindsight as well as
runtime. IIP gives data teams and their organizati-
ons the ability to pinpoint the code that was used to
transform and gain value from their data.

Self-containment Principle (S-CP): “This principle
dictates that a container should contain everything
it requires at build time.” Relying only on the avai-
lability of the Linux kernel effectively allows any lib-
rary or even language to be used at data pipeline
definition/creation time. Today, the majority of data
transformations and data science work is done in
Python with an abundance of choice when it comes
to feature engineering, data transformation, and ML/
statistical model training. S-CP allows data teams to
use any of their favorite tools and libraries to effec-
tively build a runtime environment tailored to their
needs.

Runtime Confinement Principle (RCP): “This RCP
principle suggests that every container declares its
resource requirements [CPU, Memory, Storage] and
pass that information to the platform.” Data pipe-
lines can and should declare their resource requests.
Having the ability to change these at runtime makes
for great adaptability and leads to less downtime or
crashes of data pipelines. This principle improves the
transparency for analyzing resources used by diffe-
rent data teams across organizations. RCP allows
for isolation of resource consumption and therefore
failures, which are caused by “rogue” data pipelines
consuming more resources than expected.

1 https://www.redhat.com/en/resources/cloud-native-container-design-whitepaper

“Image Immutability”,

“Self-containment”,

and “Runtime Con-

finement” are three

container based ap-

plication principles,

that greatly benefit

developing and de-

ploying data pipe-

lines.

https://www.redhat.com/en/resources/cloud-native-container-design-whitepaper

“Image Immutability”, “Self-containment”, and “Runtime Confinement” are three of RedHat’s
seven principles. These three principles have a high impact on developing, deploying and
operating data pipelines. Applying these to data pipeline runtimes will result in more con-
sistent testing, higher transparency of deployed code, and better over-all observability.

Figure 1: Container Based Data Pipelines

Sidecars: Non-intrusive Observability Pattern
Containers and Kubernetes unlock the potential for
real-time and non-intrusive monitoring, logging, and
debugging features. A common pattern for this is the
use of sidecar containers. Sidecars are automatical-
ly injected into a Kubernetes Pod and resemble the
standard practice to increase observability, control,
and auditing potentials for cloud-native workloads.

Injecting sidecars to, for instance, forward network
connection and application logs of data pipelines
allows for centralized observation. Utilizing open-
source tools for service meshes (e.g., OSM, Istio,
Linkerd, etc.) and alerting & monitoring (e.g., Pro-
metheus, Grafana, ELK, etc.) allows for maximum
transparency and control integrated into establis-
hed technologies.

Cloud-native tools unlock these capabilities without
putting a burden on the developer of data pipelines,
since these benefits are automatically provided by
the underlying platform at deployment time without
the container being aware of them.

Cloud-native platforms for data pipelines might in-
ject sidecars into workloads, so that organizations
can have full transparency on the “Who?”, “What?”,
and “Why?” for all data that is being processed,
transformed, and loaded into analytics databases
or ML models (referred to as “Data Sinks” below).

Sidecar containers allow for so-called circuit brea-
kers. Circuit breakers are processes, which isolate
a given workflow from the rest of your applications
and databases. Detecting malicious or unexpected
behavior of a data pipeline is enabled by the collec-
ted data. Once, a data pipeline is classified as a thre-
at, circuit breakers can isolate the given process to
reduce harm to the software system as a whole.

Cloud-native tools

unlock observability,

without placing a

burden on data de-

velopers. Sidecars

are injected by the

underlying platform.

Figure 2: Observability for Data Pipelines

Declarative Data Pipelines for Operations
As stated in CNCF’s definition of cloud-native tech-
nologies, declarative APIs are a cornerstone of
cloud-native technology. Among APIs, we also have
tools like Hashicorp Terraform, AWS CloudFormation,
Kubernetes Manifests, and others that commoditize
“Infrastructure as Code” and enable developers to
manage their infrastructure in a declarative manner.

A declarative approach allows for more reliable, re-
silient, and reproducible deployments and faster
iterations in development. To allow the declarative
definition of data pipelines, the underlying platform
needs to fulfill a couple of prerequisites.

A common pattern in cloud-native environments
is the outsourcing of the application state, e.g. mo-
ving session affinity to load balancers, implemen-
ting cache management with key-value stores, etc.
State-managing technologies are consumed as
services, which are declared as dependencies and
either configured during runtime or at deployment
time.

To enable declarative descriptions of data pipelines,
we require services to keep some state and connect
individual data pipelines to these. Each data pipeline
requires the ability to outsource:

1. Which data has already been processed?

2. How to connect to a given data source or
sink?

3. How many resources can or shall be used?

Questions 2 and 3 are easily answered by an or-
chestration system like Kubernetes. Connections to
data sources and sinks can be defined through a
combination of ConfigMaps and Secrets, which can
be referenced at container startup time. New data
pipelines might be configured to use a certain Sec-
ret managed by the operator deploying the pipeline.

Container orchestration systems provide means to
declare how many resources a given application re-
quires. Such ResourceRequests can be used to sche-
dule a data pipeline.

Unlock declarative

data pipelines by

outsourcing state

management to an

event streaming

system like Apache

Kafka.

Which data has already been processed? DataCater uses Apache Kafka to keep track of
records processed by committing offsets. Event-sourcing systems source events from data
stores and can retain the data for a requested period of time in their local storage. Sourced
events can be emitted or polled by data pipelines to apply transformations and load the
processed data into target data sinks.

Therefore, an event-sourcing system such as Apache Kafka Connect is crucial for modern
cloud-native data pipelines. Having a service tracking what data has processed by which
consumer unlocks the potential for having a declarative approach to data pipelines.

With state management provided by a platform with the above components, we can de-
fine Data Pipelines as a set of three components: data sources, filters and transformations,
and data sinks. The following Figure 3: Data Pipelines as Code illustrates a cloud-native data
pipeline.

Figure 3: Data Pipelines as Code

DevOps and DataOps
In the scope of this whitepaper, we define DevOps
as “a set of practices intended to reduce the time
between committing a change to a system and the
change being placed into normal production, while
ensuring high quality”.2

The ultimate goal of DataOps would be to reduce
the time needed for developing and deploying data
pipelines. Breaking down the parts of the above de-
finition, we can derive tools required to implement
automated deployments to production upon code
changes in data pipelines.

The status quo of developing and operating data
pipelines unveils a couple of conceptual flaws when
it comes to automated roll-outs of new pipeline re-
visions. We addressed two needs of data pipelines,
runtime consistency and declarative definition, in
former chapters. This chapter focuses on automati-
cally ensuring the quality of changes applied to data
pipelines.

Application development in a DevOps fashion en-
sures high quality by having consistent builds and
fully-automated unit, integration, and end-to-end
testing of new revisions. Data pipeline developers do
not have access to similar tooling and cannot effi-
ciently test changes before rolling them out to pro-
duction. Reasons for this include:

1. Runtimes are not isolated. Resource sharing
makes it almost impossible to replicate be-
havior from testing environments to produc-
tion environments, and vice versa. Produc-
tion environments typically run much more
workloads in parallel and are equipped diffe-
rently, making them behave differently.

2. Frameworks like Apache Spark, Apache Ha-
doop, etc. require a running (simulated) clus-
ter for their programmatic APIs to work. As a
consequence, unit tests either become long-
running procedures or developers test their
data transformations separately and “hope”
that the corresponding frameworks APIs be-
have the same way.

2 Bass, Len; Weber, Ingo; Zhu, Liming (2015). DevOps: A Software Architect‘s Perspective.

Reduce data pipeline

development itera-

tions by switching to

an event streaming

execution model.

We propose a different approach to processing data. From our experience, most data sets
are in motion and change over time. Instead of assuming that a data set can be processed
in one go as a batch, we prefer considering data sets as continuous flows of information. As
a consequence, we never assume that a data set is complete but always expect that - at a
certain time - we can only see a window of an endless stream of data. In other, slightly more
technical terms, we suggest perceiving batch jobs as a subset of event streaming where
batches might resemble a window, defined by time range or amount of records, of data
change event streams.

Moving from batch processing to streaming unlocks automated quality assurance for data
pipelines. Container-based data pipelines are self-contained and define their needed re-
sources at deployment time. Self-containment isolates data pipelines from each other and
allows an orchestrator, like Kubernetes, to ensure the availability of compute resources be-
fore starting the transformation of data.

Windowed streams can be emulated by the same principles as applied in continuous inte-
gration pipelines. For efficient testing, you might reduce the size of the window, if your data
pipeline requires aggregates. However, there is no need to change the actual code to ad-
here to a certain specialized test runtime, as the code you test with is the exact same code
you run in production.

Figure 4: Development Loop for Batch and Streaming

Scalability - changing data processing
Gartner defines scalability as follows:

“Scalability is the measure of a system’s ab-
ility to increase or decrease in performance
and cost in response to changes in applica-
tion and system processing demands.”3

One major reason why cloud providers are tremen-
dously successful is their “pay as you go model”,
which requires scalability built into applications. To-
day's ETL, ELT, and data pipeline frameworks work by
loading large batches of data. Hence, the amount
of resources requested, especially CPU, disk storage,
and memory, are calculated against the peak load.
This in it itself is not a scalable approach, as we can-
not adapt over time.

Kubernetes and other cloud-native technologies
give us the ability to elastically scale our resource
needs at runtime: Requesting more or less resources
is a common approach. With event streaming, we
can make use of the scalability capabilities of mo-
dern cloud-native runtimes.

Once we make the shift to event streaming, the need
to calculate peak loads becomes obsolete. Contai-
ner-based data pipelines can automatically cal-
culate their resource requirements as a function of
window size. In its most basic version, the function
would look like:

R(window_size) := window_size * record_size
+ constant

With event streaming as the standard mechanism to
extract, move, transform, and load data to databa-
ses. We can leverage scalability of underlying cloud
native platform resource allocation to optimize our
usage of resources. Kubernetes offers so-called Ho-
rizontal Pod Scalers (HPA). HPA’s are automatical-
ly managed by Kubernetes for certain application
types like Deployments. As we outsourced tracking
state, we can deploy streaming data pipelines as
stateless applications and Kubernetes takes care of
varying the resource usage. This is depicted in the
following figure.

3 https://www.gartner.com/en/information-technology/glossary/scalability

Adopting scalability

to data pipelines by

specializing on event

streaming and lea-

ving batch models

behind.

https://www.gartner.com/en/information-technology/glossary/scalability

Figure 5: Scalability for Batch and Streaming

Conclusions
Cloud-native environments change the way we, as
an industry, should work with data. This white paper
walked through the advantages of applying cloud-
native best practices to data workflows like ETL, ELT,
and data pipelines in general.

We discovered shortcomings in tooling and plat-
forms, which need to be addressed to effectively
transfer learnings from DevOps to data workflows.
DataOps can be achieved, if we advance the de-
velopment of data pipelines as follows:

• Reduce steps for continuous integration by
using the same runtime for development,
testing, and production is enabled by contai-
ner images as immutable contexts.

• Prefer (windowed) streams over batches
for a higher elasticity instead of blocking re-
sources for peak loads.

• Use modern message brokers, such as Apa-
che Kafka, for managing the state of data
pipelines.

Want to learn more?

Reach out to us!

info@datacater.io

mailto:info%40datacater.io?subject=

Cloud-Native
Data Pipelines
December, 2021

Want to learn more? Reach out to us!

info@datacater.io

mailto:info%40datacater.io?subject=

